a2 United States Patent

Chinkov et al.

US009459985B2

US 9,459,985 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

BIOS TRACING USING A HARDWARE

PROBE

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

INTEL CORPORATION, Santa Clara,
CA (US)

Alexey Chinkov, Haifa (IL); Pavel
Konev, Haifa (IL)

Intel Corporation, Santa Clara, CA
us)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 25 days.

14/229,679

Mar. 28, 2014

Prior Publication Data

US 2015/0278070 Al Oct. 1, 2015

Int. CL.

GO6F 11/00 (2006.01)

GO6F 11/34 (2006.01)

GO6F 11/36 (2006.01)

GO6F 13/00 (2006.01)

U.S. CL

CPC ... GO6F 11/348 (2013.01); GOGF 11/3419
20

2 2

Target /
board

(2013.01); GO6F 11/3636 (2013.01); GO6F
11/3648 (2013.01); GO6F 13/00 (2013.01)
(58) Field of Classification Search
USPC 714/27
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,136,096 B1* 3/2012 Lindahl GOG6F 11/364
714/45

2013/0013962 Al* 1/2013 Liangcccocoe.. GO6F 11/221
714/43

FOREIGN PATENT DOCUMENTS

WO 2013101560 A 7/2013

* cited by examiner

Primary Examiner — Sarai Butler
(74) Attorney, Agent, or Firm — Jordan IP Law, LLC

(57) ABSTRACT

Methods and apparatuses may provide for tracing the per-
formance of BIOS from the start of its execution. A hard-
ware device such as a hardware probe may be connected to
the processor on a target board and used to gather and
transfer data to a host computer without resort to a COM
port.

16 Claims, 8 Drawing Sheets

Null-modem cable

2
=
o
O

6\
=
Q
&

24

28 30
/ r------ K -1
P I
PR . v Terminal
S -7 : lication 1
Host PC , app .
Lo __ J

U.S. Patent Oct. 4, 2016 Sheet 1 of 8 US 9,459,985 B2

20 28 30
\ 22 26 / /
F------ - -7
g Null-modem cable % L~~~ ;/— _E Terminal E
Target |O] / 1] Host I\DEZ’ 1 application
board 0s 1]
D N

FIG.1

U.S. Patent Oct. 4, 2016 Sheet 2 of 8 US 9,459,985 B2

COM port
ready ?

/18

Send next character to
COM port

FIG.2

U.S. Patent Oct. 4, 2016 Sheet 3 of 8 US 9,459,985 B2

CPU Reset

32

\

Y 34
BIOS early init

\

Y 36
COM port init

&

BIOS code block

Y

40 Debug string output
via COM port

42

More BIOS
code ?

FIG.3

U.S. Patent Oct. 4, 2016 Sheet 4 of 8 US 9,459,985 B2

50) 62 66
5

\ o [/.
Target Host PC — _.r 1|
board [—1 L — T~ . ’,’ ! Trace !
- i Viewer I
51 ~ 61~ I I
oo J

FIG.4

Sheet 5 of 8 US 9,459,985 B2

70

CPU Reset /

Y
Debug string output
via ET

74

U.S. Patent Oct. 4, 2016

72

Y
_.-1 BIOS early init 7
¥ 76
,'/ COM port init

/I V‘

1 78 ——

N - BIOS code block
[e
I‘ ,” *
1S Debug string output

76 " via ET
v 80
i
Additional ET
More BIOS

events are logged
code ?

82

FIG.5

U.S. Patent Oct. 4, 2016 Sheet 6 of 8 US 9,459,985 B2

End of
string ?

/90

| Send next character to
.= COM port

Character is
captured by ET

FIG.6

U.S. Patent Oct. 4, 2016 Sheet 7 of 8 US 9,459,985 B2

A

98
v e

| Send next character to
-7 COM port

Character is
captured by ET

FIG.7

US 9,459,985 B2

Sheet 8 of 8

Oct. 4, 2016

U.S. Patent

8'9ld

Otl A 19MBIA 9981

|\ﬁ uoljdaox3

sabessow
SOold

h S988800E

I
_
HSIN I
_
I

umoys Js3sibal Jo sjusu0d)

|

8]0SuU0) X8|

Gcl

J

== Ndd
! =
[[]
_ =
[]
! 5| | preog yebue)
“ w A
I w ndo 40)%
|
- |g LT
_ : g
m
! =
! m
m
B | w
(dim) A1 sy MH Buroes] va 0Ll
uo ap0va(Q ,

US 9,459,985 B2

1

BIOS TRACING USING A HARDWARE
PROBE

BACKGROUND

The Basic Input/Output System (BIOS) continues to be in
widespread use in millions of computer systems as a firm-
ware interface. It may be the very first piece of software that
computers built in compliance with Personal Computer (PC)
standards (e.g., of IBM Corporation) load and operate when
powered up. The BIOS may instruct the computer to ini-
tialize basic input/output (I/O) hardware, including key-
board, central processing unit (CPU), memory, and monitor
control. It may further be used to boot up the operating
system (OS) or a loader for the operating system. The BIOS
may be an example of firmware that is stored on a memory
chip located on the computer motherboard.

Given the centrality of correct BIOS operation to the
subsequent functioning of the computer, an error in the
loading or operation of the BIOS may cause other errors in
the computer system that may render it unusable. When such
errors occur, it may be useful to have some mechanism for
identifying them. One approach is to use utilities located
within the BIOS itself, but when the problem lies within the
BIOS, this approach may be of limited value.

Another approach is to use data recorded in the comput-
er’s serial log. This data may be used to debug platform
issues. The data may be captured via a serial cable connected
to the Communication (COM) port, a serial port interface on
PC-compatible computers. This interface, however, is
increasingly a legacy port that is not present in newer
computers. As a result, an additional board having a COM
port may have to be provided in order to capture data from
the serial log. Even when a COM port is available, a direct
connection to may entail the use of a serial cable to access
the data, which itself may present issues of its own in terms
of additional expense and limitations on data throughput
rate.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the embodiments will become
apparent to one skilled in the art by reading the following
specification and appended claims, and by referencing the
following drawings, in which:

FIG. 1 is a block diagram of an example of a known
system by which diagnostic information may be acquired;

FIG. 2 is a flowchart of an example of a known method
of conveying string information to a COM port;

FIG. 3 is a flowchart of an example of a known method
of using a COM port to acquire diagnostic information;

FIG. 4 is a block diagram of an example of a system by
which diagnostic information may be acquired according to
an embodiment;

FIG. 5 is a flowchart of an example of a method of
acquiring diagnostic information according to an embodi-
ment;

FIG. 6 is a flowchart of an example of a method of
obtaining debugging string output according to an embodi-
ment;

FIG. 7 is a flowchart of an example of a method of
obtaining debugging string output according to an additional
embodiment; and

FIG. 8 is a block diagram of an example of a debugging
system according to an embodiment.

DESCRIPTION OF EMBODIMENTS

During boot-up of a PC-type computer, the BIOS may
generate a serial log file that, in the event of a boot failure,

20

40

45

55

60

65

2

may be useful in ascertaining the reason for that failure. For
example, systems provided with a so-called “Debugging
Build” of BIOS are known and generate debugging output,
and may be favored for use in the design or manufacturing
stage of a computer, although BIOS with similar capabilities
can be provided on other systems for other purposes or
stages as well. The data of the serial log file may be a
character file that provides a kind of running commentary on
the boot process and contains data useful in debugging
should that process fail or otherwise be defective. For
example, serial log file may contain error codes generated by
the BIOS at boot-up.

Turning to FIG. 1, a target board 20 in a system of interest
(the one that is booting up) launches its BIOS, generating a
serial log file, which is sent to a COM port 22. The data of
the serial log file may be conveyed as a character string to
the COM port 22 on the target board 20. The serial log file
may then be sent, character-by-character, over a serial cable
24 to a COM port 26 of a host PC 28 that may be running
a terminal application 30 that assists in analyzing the serial
log file and debugging the BIOS on the target board 20.
Examples of commercially available terminal applications
suitable for use with embodiments include HyperTerminal
by Microsoft® and PuTTY, an open source product that may
be used with Windows®. The illustrated serial cable 24 is a
null modem cable, and may be more expensive relative to
other sorts of cables used in connecting computers together.
The serial cable 24 may also be relatively slow, as the COM
port provides data transfer speeds substantially less than
other ports in computers and other cable arrangements, such
as those attainable via USB (Universal Serial Bus, e.g., USB
Specification 3.0, Rev. 1.0, Nov. 12, 2008, USB Implement-
ers Forum) protocol ports and cables.

A standard method by which data such as the string data
that makes up the serial log file is sent to the COM port by
the BIOS is illustrated in FIG. 2. Illustrated block 12 queries
whether a string (which may be the serial log file) is at an
end and if it is, then there is nothing further to send to the
COM port and the process is at an end. If, however, the end
of the string has not been reached, then at illustrated block
16 the COM port is polled to determine if it is ready to
receive the next character in the string. If it is not, then
control loops back around block 16 until the COM port is
ready, at which time the next character is sent to the COM
port at illustrated block 18 and control loops back to the start
of the end-of-string test provided in block 12. Hence, it is
seen that the COM port may provide a limit on the speed
with which data may be transferred, including data concern-
ing BIOS performance.

One known manner in which a COM port may be used is
illustrated in FIG. 3. When a system is turned on, the CPU
of the system may be reset at block 32, and the BIOS
executes its early initialization steps (e.g. some aspects of
chipset initialization) at illustrated block 34. During these
early steps, there may be no visibility of the BIOS at the
COM port because the COM port has not yet been initial-
ized. A short time later, the COM port may be initialized at
block 36, and an additional block of BIOS code is executed
at illustrated block 38. The serial log file may begin to be
generated at illustrated block 40. If at block 42 it is deter-
mined that there is additional BIOS code to execute, then
control loops back to block 38, and that additional code is
executed. Character-by-character, this process produces the
serial log file that is sent to the COM port, subject to the
limitations of the process depicted in FIG. 2, in which the
COM port may act as a choke point on the throughput speed
as has been explained above with reference to FIG. 2.

US 9,459,985 B2

3

FIG. 4 illustrates an example of a configuration by which
data may be acquired without having to make use of a serial
cable. The illustrated configuration employs a hardware tool
known as a hardware probe, which may be a device used in
computer hardware and microprocessor design to control
and/or monitor a target processor at the register level. A
number of commercially available versions of a hardware
probe suitable for use here are available, including In Target
Probe (ITP) offered by Intel®, and other hardware probes
available through Arium® and Lauterbach®. Other common
terms by which this hardware is known include “in-circuit
debugger,” and “Joint Test Action Group (JTAG) probe/
debugger with trace.” A hardware probe may be physically
connected to certain pins on a processor to enable the
hardware probe to directly read the results of each processor
instruction, including the contents and state of individual
registers. In general, a hardware probe may be connected to
any pin of interest to facilitate monitoring the internal
registers of the processor, as well as specialized debug pins
provided to facilitate debugging.

In addition to being able to read the contents of internal
registers at a given time, the hardware probe may be able to
halt the CPU where desired, control the execution of soft-
ware, and permit the use of hardware break points as well as
software break points, all of which may facilitate the debug-
ging process. A hardware probe may provide access to
substantially greater information than may be provided by a
serial log file, although it also may provide access to the
serial log file as it is being generated. The hardware probe as
deployed here may further allow one to monitor the BIOS
from the instant it is launched on power-up of a system. In
this way, the hardware probe may provide visibility to the
BIOS from the moment the hardware probe is connected and
begins to run, as it is not dependent on any target board
initializations to work. For example, the hardware probe
does not require initialization of the COM port on the target
board. The hardware probe may thus see earlier in time than
a debugging system that reads data from the target board’s
COM port.

Processor architectures have been developed that further
facilitate the use of a hardware probe by gathering such
directly accessed data as a hardware probe may collect and
conveying that data to a common port to which the hardware
probe may be connected. For example, Intel Corporation
offers Extended Debug Port (XDP) on certain processors.
XDP s a 60 pin small form factor connector port that gathers
data from a number of processor pins to a common port for
ease of connection to a hardware probe. Additionally, the
hardware probe may be used in conjunction with event trace,
which may be a type of software or firmware used to
facilitate debugging. Such software may permit a hardware
probe to monitor execution of software and BIOS without
requiring modifications to the code being executed. Occur-
rences such as interrupts, exceptions, code/data breakpoints
and more may be accessed and stored along with time-stamp
information. Event trace software may help track code
execution paths by showing a trace of events that have
occurred. In some embodiments, the event trace software
may run on the CPU of the target board (e.g., the “board
processor”). One example of commercially available event
trace software is Architectural Event Trace (AET) offered by
Intel Corporation, which is a CPU feature that may run on
the CPU of the target board.

Continuing now with reference to FIG. 4, a target board
50 in a system of interest (i.e., the one that is booting up)
launches its BIOS on boot-up, generating a serial log file
which may be monitored by a hardware probe 52 via direct

5

10

20

25

30

35

40

45

50

55

60

65

4

connection of the hardware probe 52 to certain pins of a
board processor 51 or via an XDP port (not separately shown
in FIG. 4) to which the hardware probe 52 may be con-
nected. The data so collected may be conveyed via a
standard USB cable 58 to a port 60 (which may be a standard
USB port) on a host PC 62, where the information is
processed by a host processor 61 and presented on a trace
viewer 66. The hardware probe 52, the USB cable and the
port 60 may therefore form a linkage between the board
processor 51 and the host processor 61, wherein the linkage
conveys data concerning the board processor 51 (e.g., states
of one or more processor and/or board registers, interrupts,
exceptions, code/data breakpoints) to the host processor 61.

Turning now to the method illustrated by the flowchart in
FIG. 5, an example of an implementation to monitor a serial
log as well as other events according to an embodiment is
shown. At illustrated block 70 the CPU is reset (e.g., as a
result of system power-on) and a debug string begins to be
created and monitored via the event trace at block 72. Since
the hardware probe and event trace require no initializing on
the target board to operate, they may provide visibility of the
target system from before the start of the BIOS. At illustrated
block 74 the BIOS is in the early stages of initialization, and
at block 76 the COM port may be initialized. An additional
block of BIOS code is executed at illustrated block 78,
wherein a debug string may be output at block 80 via the
event trace. Various events, including events relating to the
BIOS, are logged by the event trace at illustrated blocks 74
and 78. Conditional block 82 checks to see if there is any
more BIOS code to run and if so, control passes back to
block 78. If there is no additional BIOS code to run, the
process ends.

The method and system depicted in FIG. 5 therefore
allows one to dispense with the use of a serial cable and
provides data from the very start of the BIOS, which
facilitates debugging that may be required. The use of a
hardware probe in conjunction with event trace permits the
collection of information in addition to what may be pro-
vided by the serial log file. The speed at which the data is
captured, however, may be constrained by the manner in
which the BIOS feeds data to the COM port, as is illustrated
in FIG. 6. More particularly, an end-of-string condition may
be tested for at block 84 and if found, the process is at an
end. If the string is not at an end, then at illustrated block 88
the system polls the COM port to determine when it is ready
to receive the next character. At block 90 when the COM
port is available, the next character may be sent to it and
captured by the event trace at block 92. Thus, in this
arrangement, the speed of operation may be constrained by
the need to wait for the COM port to be in a ready state to
receive data.

This limitation on speed may be eliminated by modifying
the BIOS code to permit the event trace to capture data
without having to poll the state of the COM port. An
example of such an approach method is illustrated in FIG. 7.
An example of such a modification to some lines of BIOS
code to implement the approach is as follows, where the
double use of the “/” symbol indicates code that has been
commented out:

while ((SerialPortReadRegister
LSR_TXRDY==0);

//LSR_OFFSET is COM port base+%

//LSR_TXRDY is bit[5]

Here, an end-of-string condition is tested in block 94 and
if there is more data in the string, then the next character is
sent to the COM port at 98 whether the COM port is
formally ready for the next character or not. This approach

(LSR_OFFSET) &

US 9,459,985 B2

5

is possible because the system does not actually use the
COM port to send data from the target board to the host PC,
but instead captures it at block 99 via event trace. The
illustrated approach therefore eliminates the COM port as a
speed bottleneck, and may increase the speed appreciably. In
some implementations, the illustrated approach may result
in speeds that are several times faster than may be had when
using a serial cable and COM port.

The methods illustrated in FIGS. 5-7 may be may be
implemented in executable software as a set of logic instruc-
tions stored in a machine- or computer-readable medium of
a memory such as random access memory (RAM), read only
memory (ROM), programmable ROM (PROM), firmware,
flash memory, etc., in configurable logic such as, for
example, programmable logic arrays (PLAs), field program-
mable gate arrays (FPGAs), complex programmable logic
devices (CPLDs), in fixed-functionality logic hardware
using circuit technology such as, for example, application
specific integrated circuit (ASIC), complementary metal
oxide semiconductor (CMOS) or transistor-transistor logic
(TTL) technology, or any combination thereof.

FIG. 8 is a block diagram of an example 100 of an
embodiment. In the illustrated example, a target board 102
has a CPU (e.g., a board processor) and is executing BIOS
code. A port 105 may pass data via a hardware probe to a
Digital Abstraction Layer (DAL) 110, which used by a
software decoder 112 that event tracing software 114 may
use to generate a file 120 displayed on a trace viewer 130,
here indicating a CPU exception 134. In an alternative
embodiment, a text console 125 may display the raw data
from the trace. Thus, the hardware probe is linked to the
board processor to obtain information/data concerning
execution of the BIOS in the illustrated example, wherein
the information/data may be collected without polling a
COM port of the target board 102.

ADDITIONAL NOTES AND EXAMPLES

Example 1 may include a system to trace a process,
comprising a board processor on a target board, a host
processor, and a linkage coupled to the host processor, the
linkage to convey data concerning the board processor to the
host processor, wherein the linkage comprises a hardware
probe.

Example 2 may include the system of Example 1, wherein
the board processor comprises a Basic Input/Output System
(BIOS) stored on the target board, and the hardware probe
is linked to one or more pins of the board processor.

Example 3 may include the system of Example 2, further
comprising a host computer system and includes the host
processor.

Example 4 may include the system of Example 3, wherein
the host processor is connected to the hardware probe via a
cable that is not a serial cable.

Example 5 may include the system of any of Examples
1-4, wherein the target board has a communications (COM)
port and the data is collected without polling the state of the
COM port.

Example 6 may include the system of either Examples 2
or 4, wherein the hardware probe accesses one or more
registers located on the target board.

Example 7 may include the system of Example 6, further
comprising an event trace which is accessed data relating to
one or more of the target processor’s interrupts, exceptions,
register states, or code/data breakpoints.

Example 8 may include the system of Example 3, further
comprising a trace viewer on the host computer system.

10

15

20

25

30

35

40

45

50

55

60

65

6

Example 9 may include the system of any of Examples
1-4, wherein the computer host system accesses a serial log
file associated with the target board.

Example 10 may include the system of Example 2,
wherein the hardware probe is connected to a port on the
target board.

Example 11 may include an apparatus for tracing a
process on a processor, comprising a processor on a target
board, a hardware probe linked to the processor, and a port
to receive data concerning the processor from the hardware
probe.

Example 12 may include the apparatus of Example 11,
wherein the processor comprises a BIOS stored on the target
board, the hardware probe is linked to one or more pins of
the processor on the target board to obtain information
concerning execution of the BIOS.

Example 13 may include the apparatus of Examples 11 or
12, wherein the target board has a communications (COM)
port and the BIOS on the target board permits the collection
of data without polling the COM port.

Example 14 may include the apparatus of Example 12,
wherein the hardware probe accesses one or more registers
located on the target board.

Example 15 may include the apparatus of Example 14,
wherein the hardware probe is able to access one or more of
the target processor’s interrupts, exceptions, or code/data
breakpoints.

Example 16 may include the apparatus of Examples 11,
12, 14, or 15, further comprising an event trace.

Example 17 may include a non-transitory computer read-
able storage medium comprising a set of instructions which,
if executed by a processor, cause a computer device to read
data concerning the state of a processor located on a target
board, and convey said data to a host system via a hardware
probe and an event trace.

Example 18 may include the non-transitory computer
readable storage medium of Example 17, wherein the data
relates to the performance of a BIOS on the target board.

Example 19 may include the non-transitory computer
readable storage medium of Example 18, wherein the
instructions, if executed, cause the data to be sent to a host
system without using a serial port on the target board.

Example 20 may include a method of debugging a process
running on a processor on a target board, comprising estab-
lishing a connection between a hardware probe and a
processor on a target board, reading information from the
processor that is relevant to the process, conveying said
information from the probe to a host system, and analyzing
said information to debug the process.

Example 21 may include the method of Example 20,
wherein the process comprises a BIOS stored on the target
board.

Example 22 may include the method of either of
Examples 20 or 21, wherein the hardware probe is linked to
one or more pins of the processor on the target board.

Example 23 may include the method of Example 22,
further comprising establishing a cable connection between
the target board and the host system that does not use a serial
cable.

Example 24 may include the method of Example 20,
wherein the target board has a communications COM port
and the BIOS on the target board permits the collection of
data without polling the state of the COM port.

Example 25 may include a method of debugging the
operation of a system BIOS running on a target board,
comprising establishing a connection between a hardware
probe and a processor on a target board, using the hardware

US 9,459,985 B2

7

probe to read information from the processor, transmitting
said information from the hardware probe to a separate
computer system, and analyzing the data on the separate
computer system.

Example 26 may include the method of Example 25,
wherein the separate computer system includes tracing soft-
ware.

Example 27 may include the method of Example 25,
wherein information is conveyed from the target board to the
separate computer system via a cable that is not a serial
cable.

Example 28 may include the method of Example 25,
wherein the processor of the target board has event tracing
capability.

Example 29 may include the method of Example 25,
wherein a Universal Serial Bus (USB) cable is used to
transmit information from the hardware probe to the sepa-
rate computer system.

Example 30 may include the method of Example 25,
wherein BIOS polling of the COM port is disabled.

Example 31 may include a method of debugging BIOS on
a processor located on a target board, comprising resetting a
processor on a target board, using event tracing software to
generate string data concerning the operation of the proces-
sor, commencing execution of BIOS on the processor,
logging events relating to the BIOS and thereby creating a
log, and outputting the log to a hardware probe.

Example 32 may include the method of Example 31,
further comprising conveying the log to a separate computer
system.

Example 33 may include the method of Example 32,
wherein the separate computer system has a trace viewer.

Example 34 may include the method of Example 31,
including logging events not related to the BIOS.

Example 35 may include the method of Examples 31-34,
comprising disabling BIOS polling of a COM port that is
located on the target board.

Example 36 may include an apparatus to debug a process
on a target processor, comprising means for acquiring data
concerning the operation of that process from the target
processor, and means for conveying that data to a separate
system via a cable that is not a serial cable.

Example 37 may include the apparatus of Example 36,
wherein the data is stored in a serial log file.

Various embodiments may be implemented using hard-
ware elements, software elements, or a combination of both.
Examples of hardware elements may include processors,
microprocessors, circuits, circuit elements (e.g., transistors,
resistors, capacitors, inductors, and so forth), integrated
circuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), logic gates,
registers, semiconductor device, chips, microchips, chipsets,
and so forth. Examples of software may include software
components, programs, applications, computer programs,
application programs, system programs, machine programs,
operating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(API), instruction sets, computing code, computer code,
code segments, computer code segments, words, values,
symbols, or any combination thereof. Determining whether
an embodiment is implemented using hardware elements
and/or software elements may vary in accordance with any
number of factors, such as desired computational rate, power
levels, heat tolerances, processing cycle budget, input data

10

15

20

25

30

35

40

45

50

55

60

65

8

rates, output data rates, memory resources, data bus speeds
and other design or performance constraints.

Embodiments are applicable for use with all types of
semiconductor integrated circuit (“IC”) chips. Examples of
these IC chips include but are not limited to processors,
controllers, chipset components, programmable logic arrays
(PLAs), memory chips, network chips, and the like. In
addition, in some of the drawings, signal conductor lines are
represented with lines. Some may be different, to indicate
more constituent signal paths, have a number label, to
indicate a number of constituent signal paths, and/or have
arrows at one or more ends, to indicate primary information
flow direction. This, however, should not be construed in a
limiting manner. Rather, such added detail may be used in
connection with one or more exemplary embodiments to
facilitate easier understanding of a circuit. Any represented
signal lines, whether or not having additional information,
may actually comprise one or more signals that may travel
in multiple directions and may be implemented with any
suitable type of signal scheme, e.g., digital or analog lines
implemented with differential pairs, optical fiber lines, and/
or single-ended lines.

Example sizes/models/values/ranges may have been
given, although embodiments are not limited to the same. As
manufacturing techniques (e.g., photolithography) mature
over time, it is expected that devices of smaller size could be
manufactured. In addition, well known power/ground con-
nections to IC chips and other components may or may not
be shown within the figures, for simplicity of illustration and
discussion, and so as not to obscure certain aspects of the
embodiments. Further, arrangements may be shown in block
diagram form in order to avoid obscuring embodiments, and
also in view of the fact that specifics with respect to
implementation of such block diagram arrangements are
highly dependent upon the platform within which the
embodiment is to be implemented, i.e., such specifics should
be well within purview of one skilled in the art. Where
specific details (e.g., circuits) are set forth in order to
describe example embodiments, it should be apparent to one
skilled in the art that embodiments can be practiced without,
or with variation of, these specific details. The description is
thus to be regarded as illustrative instead of limiting.

The term “coupled” may be used herein to refer to any
type of relationship, direct or indirect, between the compo-
nents in question, and may apply to electrical, mechanical,
fluid, optical, electromagnetic, electromechanical or other
connections. In addition, the terms “first”, “second”, etc. are
used herein only to facilitate discussion, and carry no
particular temporal or chronological significance unless oth-
erwise indicated.

Some embodiments may be implemented, for example,
using a machine or tangible computer-readable medium or
article which may store an instruction or a set of instructions
that, if executed by a machine, may cause the machine to
perform a method and/or operations in accordance with the
embodiments. Such a machine may include, for example,
any suitable processing platform, computing platform, com-
puting device, processing device, computing system, pro-
cessing system, computer, processor, or the like, and may be
implemented using any suitable combination of hardware
and/or software. The machine-readable medium or article
may include, for example, any suitable type of memory unit,
memory device, memory article, memory medium, storage
device, storage article, storage medium and/or storage unit,
for example, memory, removable or non-removable media,
erasable or non-erasable media, writeable or re-writeable
media, digital or analog media, hard disk, floppy disk,

US 9,459,985 B2

9

Compact Disk Read Only Memory (CD-ROM), Compact
Disk Recordable (CD-R), Compact Disk Rewriteable (CD-
RW), optical disk, magnetic media, magneto-optical media,
removable memory cards or disks, various types of Digital
Versatile Disk (DVD), a tape, a cassette, or the like. The
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
code, static code, dynamic code, encrypted code, and the
like, implemented using any suitable high-level, low-level,
object-oriented, visual, compiled and/or interpreted pro-
gramming language.

Unless specifically stated otherwise, it may be appreciated
that terms such as “processing,” “computing,” “calculating,”
“determining,” or the like, refer to the action and/or pro-
cesses of a computer or computing system, or similar
electronic computing device, that manipulates and/or trans-
forms data represented as physical quantities (e.g., elec-
tronic) within the computing system’s registers and/or
memories into other data similarly represented as physical
quantities within the computing system’s memories, regis-
ters or other such information storage, transmission or
display devices. The embodiments are not limited in this
context.

The term “coupled” may be used herein to refer to any
type of relationship, direct or indirect, between the compo-
nents in question, and may apply to electrical, mechanical,
fluid, optical, electromagnetic, electromechanical or other
connections. In addition, the terms “first”, “second”, etc.
may be used herein only to facilitate discussion, and carry no
particular temporal or chronological significance unless oth-
erwise indicated.

Those skilled in the art will appreciate from the foregoing
description that the broad techniques of the embodiments
can be implemented in a variety of forms. Therefore, while
the embodiments have been described in connection with
particular examples thereof, the true scope of the embodi-
ments should not be so limited since other modifications will
become apparent to the skilled practitioner upon a study of
the drawings, specification, and following claims.

29 <

What is claimed is:
1. A system to trace a Basic Input/Output (BIOS) process,
comprising:
a target processor on a target board, the target processor
including a BIOS stored on the target board;
a host processor; and
a linkage coupled to the host processor, the linkage to
convey data concerning the target processor and the
BIOS process to the host processor, wherein the linkage
comprises a hardware probe that is linked to one or
more pins of the target processor.
2. The system of claim 1, further comprising a host
computer system that is connected to the hardware probe
and includes the host processor.

10

15

20

25

30

35

40

45

50

10

3. The system of claim 2, wherein the host computer
system is connected to the hardware probe via a cable that
is not a serial cable.

4. The system of claim 1, wherein the target board has a
communications (COM) port and the data is collected with-
out polling a state of the COM port.

5. The system of claim 1, wherein the hardware probe
accesses one or more registers located on the target board.

6. The system of claim 5, further comprising an event
trace by which is accessed data relating to one or more of the
target processor’s interrupts, exceptions, register states, or
code/data breakpoints.

7. The system of claim 2, further comprising a trace
viewer on the host computer system.

8. The system of claim 1, wherein the host computer
system accesses a serial log file associated with the target
board.

9. The system of claim 1, wherein the hardware probe is
connected to a port on the target board.

10. An apparatus for tracing a BIOS process on a proces-
sor, comprising:

a processor on a target board, wherein the processor

includes a BIOS stored on the target board;

a hardware probe linked to one or more pins of the
processor on the target board to obtain information
concerning execution of the BIOS; and

a port to receive data concerning the processor from the
hardware probe.

11. The apparatus of claim 10, wherein the target board
has a communications (COM) port and the BIOS on the
target board permits the collection of data without polling
the COM port.

12. The apparatus of claim 10, wherein the hardware
probe is able to access the state of registers located on the
processor.

13. The apparatus of claim 12, wherein the hardware
probe is able to access one or more of the target processor’s
interrupts, exceptions, or code/data breakpoints.

14. The apparatus of claim 10, further comprising an
event trace.

15. A non-transitory computer readable storage medium
comprising a set of instructions which, if executed by a
processor, cause a computer device to:

read data concerning the state of a processor located on a
target board; and

convey said data to a host system via a hardware probe
and an event trace,

wherein the data relates to the performance of a BIOS on
the target board.

16. The non-transitory computer readable storage medium
of claim 15, wherein the instructions, if executed, cause the
data to be sent to a host system without using a serial port
on the target board.

